Издательская группа «Профи-Пресс»




Ноябрь 2017
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 12345
6789101112
13141516171819
20212223242526
27282930  





Яндекс.Метрика



Нейронную сеть научили отбирать потенциальные противораковые лекарства

 Разработчики из Mail.Ru Group, Insilico Medicine и МФТИ впервые применили нейронную сеть к созданию новых лекарственных препаратов.

Использование технологий генеративных нейронных состязательных сетей, обученных «придумывать» молекулярные структуры, может в разы сокращать время и стоимость поиска веществ, обладающих потенциально лечебными свойствами. Исследователи предполагают возможное применение этих технологий для поиска новых препаратов в самых разных областях от онкологии до сердечно-сосудистых заболеваний. Результаты опубликованы в рецензируемом журнале Оncotarget.

На данный момент в базе неорганических молекул порядка 72 млн. веществ, и только доля процента из них используется в лекарственных препаратах. Фармакологические методы создания лекарств носят, в основном, наследственный характер. Например, фармакологи продолжают исследовать аспирин, который применяется уже много лет, что-то добавляют к молекуле, чтобы снизить побочные эффекты или повысить эффективность, но это всё то же вещество. Как выбрать из 72 млн. принципиально новую молекулу, обладающую лечебными свойствами? Эту задачу и решали исследователи с помощью нейронной сети.

За основу была взята архитектура состязательных автокодировщиков, являющаяся расширением генеративных состязательных сетей. Для обучения использовались молекулы с известными лечебными свойствами и эффективной концентрацией. Информацию о такой молекуле подавали на вход сети. Сеть настраивали так, чтобы на выходе получить точно такие же данные. Она была составлена из трёх структурных элементов — кодировщика, декодера и дискриминатора, — каждый из которых выполнял свою специфическую роль, «сотрудничая» с двумя другими. Кодировщик совместно с декодером обучался сжимать и затем восстанавливать информацию об исходной молекуле, а дискриминатор помогал сделать сжатое представление более подходящим для последующего восстановления. После того как сеть обучалась на множестве известных молекул, кодировщик вместе с дискриминатором «выключались», и сеть, используя декодер, генерировала описание молекул уже сама.

Обучение нейронных сетей зависит от количества входных данных и от размеров самой сети. В среднем хорошая нейронная сетка обучается в течение недели (это зависит как от сети, так и от данных и «железа»). То, насколько хорошо идёт воспроизведение, влияет конфигурация слоев. Поиск наиболее оптимального решения архитектуры сети может занять несколько месяцев. Настройка нейронной сети — это целое искусство.

Все молекулы имеют представление в виде смайлзов — буквенных аннотаций химического вещества, которые позволяют восстановить его структуру. Стандартная запись, которой обучали в школе, не подходит для обработки сетью, но и смайлз не очень подходит — он имеет произвольную длину от одной буквы до 200. Для обучения нейронной сети требуется одинаковая длина описания (вектора). Решает эту задачу фингерпринт, в переводе «отпечаток пальца» молекулы. Фингерпринт содержит в себе всю информацию о молекуле. Существует множество способов построения «отпечатка», исследователи использовали самый простой бинарный из 166 цифр. Они конвертировали смайлзы в фингерпринты и на них уже обучали сеть.

На вход нейронной сети подавались «отпечатки» известных лекарственных молекул. Сеть должна была распределить веса параметров внутренних нейронов так, чтобы при заданном входе получился заданный же выход. Эта операция повторялась много раз — так происходит обучение на большом количестве данных. В результате получается «чёрный ящик», который умеет при заданном входе давать заданный выход. Затем разработчики убрали первые слои, и сеть генерировала фингерпринты при обратном прогоне уже сама. Учёные построили «отпечатки» для всех 72 млн молекул и далее сравнивали сгенерированные сетью фингерпринты с базой.

Отобранные молекулы должны потенциально обладать заданными качествами.

Комментирует один из авторов, аспирант МФТИ Андрей Казеннов: «Мы сделали нейронную сеть генеративного типа, то есть умеющую создавать схожие вещи, на которых она обучалась. Мы обучили модель сети, которая способна создавать новые фингерпринты с заданными свойствами».

Для проверки сети использовали патентную базу противораковых лекарств. Сначала обучали сеть на части лекарственных форм и проверяли на второй части. Задача была в том, чтобы предсказать уже известные формы, но такие, которых не было в обучающей выборке. На 69 из предсказанных веществ уже есть патенты.

Рассказывает один из авторов исследования Александр Жаворонков, глава Insilico Medicine и международный адъюнкт-профессор МФТИ: «Генеративные состязательные сети с применением обучения с подкреплением — это будущее фармакологии. В этой статье мы показали первое применение генеративных состязательных автокодировщиков, GAN’ов, для создания новых молекулярных структур противоопухолевых препаратов по определённым параметрам. Эта работа была сделана ещё летом, и с тех пор мы значительно продвинулись в этом направлении. Я очень надеюсь, что в скором времени мы сможем разрабатывать индивидуальные лекарства для лечения редких заболеваний и даже для лечения отдельных пациентов. Уже в этом году искусственный интеллект начнёт трансформировать фармацевтическую индустрию».

«GAN’ы находятся сейчас на переднем крае нейронауки. Совершенно очевидно, что они могут быть использованы на более широком спектре задач, чем генерация картинок и музыки. Мы попробовали применить этот подход в биоинформатике и получили прекрасный результат», — подводит итог Артур Кадурин, ведущий программист группы оптимизации поиска Mail.Ru Group, независимый научный консультант Insilico Medicine.

О компании

Mail.Ru Group, международный бренд My.com — крупнейший холдинг в России по дневной мобильной аудитории (TNS Mobile Index, население в возрасте 12-64 лет, в городах 700 тыс.+, ноябрь 2016 г.).

Согласно своей стратегии communitainment Mail.Ru Group развивает единую интегрированную платформу коммуникационных и развлекательных интернет-сервисов. Компании принадлежат лидирующий почтовый сервис, один из крупнейших порталов в рунете (TNS, вся Россия, 12-64, август 2016 г.), крупнейшие русскоязычные социальные сети – ВКонтакте, Одноклассники и Мой Мир, портфолио крупнейших онлайн-игр, куда входят такие проекты как Warface, Armored Warfare, Skyforge и Perfect World, сервис MAPS.ME, предоставляющий офлайн-карты и навигацию для мобильных устройств на основе данных OpenStreetMap, а также два популярных в России и СНГ мессенджера – Агент Mail.Ru и ICQ.

Mail.Ru Group принадлежат 100% компании-разработчика мобильных игр Pixonic и 100% сервиса поиска и заказа готовой еды и продуктов Delivery Club. Также Mail.Ru Group владеет миноритарными долями в ряде интернет-компаний России, Украины и Израиля.

Mail.Ru Group реализует системную работу в области развития образования в сфере IT в России. Ежегодно компания проводит международную олимпиаду для программистов Russian Code Cup, VK Cup, Форумы Технологий, активно сотрудничает с кафедрами в вузах. Mail.Ru Group принадлежит контрольная доля GeekBrains — образовательной онлайн-платформы для программистов. В ноябре 2013 года компания запустила стартап My.com. Для  развития стратегии communitainment My.com создает интегрированную платформу коммуникационных и развлекательных интернет-сервисов для международной аудитории.

Mail.Ru Group Limited — холдинговая компания для ряда дочерних компаний, включая российские операционные компании. Термин «Mail.Ru Group» в настоящем релизе в зависимости от контекста обозначает Mail.Ru Group Limited, Mail.Ru Group Limited с дочерними компаниями или соответствующую дочернюю компанию Mail.Ru Group Limited.





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




© 1994 - 2017 Издательская группа «Профи-Пресс»