Издательская группа «Профи-Пресс»




Ноябрь 2017
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 12345
6789101112
13141516171819
20212223242526
27282930  





Яндекс.Метрика



Danske Bank и Teradata внедряют систему на основе ИИ

Корпорация Teradata сообщила о том, что в Danske Bank, ведущем финансовом учреждении Северной Европы, в сотрудничестве с Think Big Analytics, была разработана и внедрена передовая, основанная на технологиях искусственного интеллекта платформа для выявления случаев мошенничества.

Платформа использует методы глубокого обучения, позволяющие анализировать десятки тысяч скрытых признаков и отслеживать миллионы банковских онлайн операций в режиме реального времени для получения информации о реальных фактах мошенничества и случаях, ошибочно принятых за мошенничество. Существенно сократив расходы на оценку ложных результатов и повысив общую эффективность своей деятельности, Danske Bank  ожидает полной окупаемости инвестиций уже в первый год эксплуатации.

«Фальсификация данных при подаче заявок на кредиты – крайне важная и острая проблема для банков. Как известно, злоумышленники постоянно совершенствуют технику, используя сложнейшие методы для совершения атак, поэтому в деле их обнаружения могут помочь передовые технологии, в частности, машинное обучение, — говорит Надим Гульзар, руководитель отдела продвинутой аналитики Danske Bank. – Мы понимаем, что в ближайшей и долгосрочной перспективе  проблема мошенничества будет только усугубляться  в связи с повышением уровня цифровизации в банковской сфере и широким распространением приложений для мобильного банкинга.  Мы признаем необходимость применения новейших технологий, способных обнаружить злоумышленников не там, где они находятся сегодня, а там, где они будут завтра. С помощью технологий ИИ мы уже добились сокращения количества ложных идентификаций на 50%, благодаря чему у половины сотрудников отдела по борьбе с мошенничеством  появилось время для решения более важных задач».

Система обнаружения мошенничества, изначально использовавшаяся в Danske Bank, была основана главным образом на написанных вручную правилах, которые активно применялись в банке в течение длительного времени. Из-за рекордного числа ложных срабатываний, иногда достигавшего 99,5% от общего числа транзакций, существенно увеличилось время на проведение проверок и выросли соответствующие расходы. При этом сотрудники отдела по борьбе с мошенничеством были перегружены работой, но реальная их производительность оставалась на низком уровне.

Специалисты Think Big Analytics начали работу в Danske Bank осенью 2016 года. Их задача состояла в том, чтобы поделиться с сотрудниками отдела продвинутой аналитики банка своими знаниями о том, как с помощью данных можно извлечь больше пользы для компании в целом. Работа совместной группы экспертов началась с создания базовой системы в рамках существующей в банке инфраструктуры. Затем были разработаны современные модели машинного обучения для выявления случаев мошенничества среди миллионов транзакций ежегодно, а в периоды пиковой нагрузки – среди нескольких сотен тысяч транзакций в минуту.  Для обеспечения прозрачности и повышения уровня доверия  наряду с моделями машинного обучения в систему включена функция  интерпретации, объясняющая и предоставляющая  информацию о действиях по блокировке.

С позиции моделирования случаи мошенничества встречаются крайне редко – примерно один случай из 100 000. Группе экспертов удалось выделить из моделей случаи, ошибочно признанные мошенничеством, и снизить их число на 50%. Вместе с этим модели способны выявлять больше случаев настоящего мошенничества, фактически повысив показатели обнаружения почти на 60%. Программа по борьбе с мошенничеством в Danske Bank – первая система, в которой реализованы методы машинного обучения и одновременно разработаны модели глубокого обучения для тестирования этой технологии.

«Для внедрения технологий исследования данных в своей организации всем банкам необходима платформа продвинутой аналитики с возможностью масштабирования, стратегия и четкий план действий перехода на цифровые технологии, — говорит Мэдз Ингвар, руководитель отдела по работе с клиентами компании Think Big Analytics. – Что касается онлайн операций, кредитных карт и платежей с помощью мобильных устройств, банкам необходим продукт в режиме реального времени – современная платформа по выявлению случаев мошенничества на основе технологий ИИ, разработанная нами совместно с Danske Bank, обрабатывает  входящие транзакции менее чем за 300 миллисекунд. То есть, когда клиенты покупают продукты в супермаркете, система проверяет транзакцию в режиме реального времени и в тот же момент сообщает результат. Именно такой продукт скоро будет использоваться во всех финансовых учреждениях».





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




© 1994 - 2017 Издательская группа «Профи-Пресс»